Faster Sequential Search with a Two-Pass Dynamic-Time-Warping Lower Bound
نویسنده
چکیده
The Dynamic Time Warping (DTW) is a popular similarity measure between time series. The DTW fails to satisfy the triangle inequality and its computation requires quadratic time. Hence, to find closest neighbors quickly, we use bounding techniques. We can avoid most DTW computations with an inexpensive lower bound (LB Keogh). We compare LB Keogh with a tighter lower bound (LB Improved). We find that LB Improved-based search is faster for sequential search. As an example, our approach is 3 times faster over random-walk and shape time series. We also review some of the mathematical properties of the DTW. We derive a tight triangle inequality for the DTW. We show that the DTW becomes the l1 distance when time series are separated by a constant.
منابع مشابه
Faster retrieval with a two-pass dynamic-time-warping lower bound
The Dynamic Time Warping (DTW) is a popular similarity measure between time series. The DTW fails to satisfy the triangle inequality and its computation requires quadratic time. Hence, to find closest neighbors quickly, we use bounding techniques. We can avoid most DTW computations with an inexpensive lower bound (LB Keogh). We compare LB Keogh with a tighter lower bound (LB Improved). We find ...
متن کاملA Piecewise Aggregate Approximation Lower-Bound Estimate for Posteriorgram-Based Dynamic Time Warping
In this paper, we propose a novel lower-bound estimate for dynamic time warping (DTW) methods that use an inner product distance on multi-dimensional posterior probability vectors known as posteriorgrams. Compared to our previous work, the new lower-bound estimate uses piecewise aggregate approximation (PAA) to reduce the time required for calculating the lower-bound estimate. We describe the P...
متن کاملFast Similarity Search of Multi-Dimensional Time Series via Segment Rotation
Multi-dimensional time series is playing an increasingly important role in the “big data” era, one noticeable representative being the pervasive trajectory data.Numerous applications ofmulti-dimensional time series all require to find similar time series of a given one, and regarding this purpose, Dynamic Time Warping (DTW) is the most widely used distance measure. Due to the high computation o...
متن کاملSSH (Sketch, Shingle, & Hash) for Indexing Massive-Scale Time Series
Similarity search on time series is a frequent operation in large-scale data-driven applications. Sophisticated similarity measures are standard for time series matching, as they are usually misaligned. Dynamic Time Warping or DTW is the most widely used similarity measure for time series because it combines alignment and matching at the same time. However, the alignment makes DTW slow. To spee...
متن کاملA Novel Approximation to Dynamic Time Warping allows Anytime Clustering of Massive Time Series Datasets
Given the ubiquity of time series data, the data mining community has spent significant time investigating the best time series similarity measure to use for various tasks and domains. After more than a decade of extensive efforts, there is increasing evidence that Dynamic Time Warping (DTW) is very difficult to beat. Given that, recent efforts have focused on making the intrinsically slow DTW ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0807.1734 شماره
صفحات -
تاریخ انتشار 2008